1) 计算一个数的所有除数和质因数或 2) 求两个数的所有公约数

请检查输入的数据。

号码 1: 没有输入值


使用下面的表格输入数字。

计算一个或两个给定数字的所有除数

如何计算(如何求)一个数的所有除数: 如果该数是合数,则将其分解为素因数(数的素因数分解)。 然后将它们所有独特组合中的主要因子相乘,得到不同的结果。
如何计算两个数的所有公约数: 两个数的所有公约数都是最大公约数的所有约数。

一个或两个数字的所有最新计算除数

除数,公约数,最大公约数,gcd(或也称为最高公约数,hcf)。

  • 如果数字“t”是数字“a”的除数,那么在“t”的素因式分解中,我们将只遇到也出现在“a”的素因式分解中的素因数。
  • 如果涉及指数,则在“t”的素因数分解中找到的任何基数的最大值最多等于“a”的素数因数分解中涉及的同一基数的指数。
  • 笔记: 23 = 2 × 2 × 2 = 8. 我们说 2 的 3 次方。 在此示例中,3 是指数,2 是底数。 指数表示底数与自身相乘的次数。 23 是幂,8 是幂的值。
  • 例如,12 是 120 的除数 - 将 120 除以 12 时余数为零。
  • 让我们看一下这两个数的素因数分解,并注意在这两个数的素数分解中出现的所有基数和指数:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 包含了 12 的所有质因数,并且它的所有底的指数都高于 12 的指数。
  • 如果“t”是“a”和“b”的公约数,则“t”的素数分解只包含“a”和“b”的素数分解中涉及的公共素因数。
  • 如果涉及指数,则在“t”的素因数分解中找到的任何基的指数的最大值至多等于“a”的素因数分解中涉及的同一基的指数的最小值 ”和“b”。
  • 文章在下面继续……
  • 例如,12 是 48 和 360 的公约数。
  • 将 48 或 360 除以 12 时余数为零。
  • 这里有三个数字 12、48 和 360 的所有素数分解:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 请注意,48 和 360 有更多的除数: 2, 3, 4, 6, 8, 12, 24. 在这些数字中,24 是 48 和 360 的最大公约数,gcd(或最大公约数,hcf)。
  • 两个数“a”和“b”的最大公约数 gcd 是“a”和“b”的素数分解中涉及的所有公素因数的乘积,每个素数都取最低指数。
  • 根据此规则,可以计算出几个数的最大公约数,如下例所示。
  • gcd (1260; 3024; 5544) = ?
  • 1260 = 22 × 32
  • 3024 = 24 × 32 × 7
  • 5544 = 23 × 32 × 7 × 11
  • 这三个数的共同质因数是:
  • 2 - 它的最低指数是 (2; 3; 4) = 2 的最小值
  • 3 - 它的最低指数是 (2; 2; 2) 中的最小值 = 2
  • gcd (1260; 3024; 5544) = 22 × 32 = 252
  • 互质数:
  • 如果两个数“a”和“b”除了 1 之外没有其他公约数,则 gcd (a, b) = 1,并且数“a”和“b”称为互质数。
  • 两个数的最大公约数的所有除数:
  • 如果“a”和“b”不是互质的,那么“a”和“b”的每个公约数都是“a”和“b”的最大公约数的约数。